(R13)

SET - 1

III B. Tech II Semester Regular Examinations, April - 2016 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE and IT)

Time: 3 hours

1

Code No: RT32054

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B**

***** PART –A

a) Distinguish between Algorithm and Psuedocode. [3M] b) Describe the Algorithm Analysis of Binary Search. [4M] c) State the Job – Sequencing Deadline Problem. [4M] d) Define i) Principles of optimality ii) Feasible solution iii) Optimal solution. [3M] e) Write the Control Abstraction of iterative Backtracking method. [4M] f) Distinguish between fixed – tuple sized and variable tuple sized state space tree [4M] organization.

2	a)	Explain the properties of an algorithm with an example.	[4M]
	b)	Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step – count method.	[8M]
	c)	Differentiate between Bigoh and omega notation with example.	[4M]
3	a)	What is meant by Divide – and – Conquer approach?	[3M]
	b)	Write Divide – And – Conquer recursive Merge sort algorithm and derive the time complexity of this algorithm.	[8M]
	c)	Write the General method of Divide – And – Conquer approach.	[5M]
4	a)	State the Greedy Knapsack? Find an optimal solution to the Knapsack instance $n=3$, $m=20$, $(P1, P2, P3) = (25, 24, 15)$ and $(W1, W2, W3) = (18, 15, 10)$.	[8M]
	b)	What is a Spanning tree? Explain Prim's Minimum cost spanning tree algorithm with suitable example.	[8M]
5	a)	Draw an Optimal Binary Search Tree for n=4 identifiers $(a1,a2,a3,a4) = (do,if, read, while) P(1:4)=(3,3,1,1) and Q(0:4)=(2,3,1,1,1).$	[9M]
	b)	Explain how Matrix – chain Multiplication problem can be solved using dynamic programming with suitable example.	[7M]
6	a)	What is a Hamiltonian Cycle? Explain how to find Hamiltonian path and cycle using backtracking algorithm.	[8M]
	b)	Discuss the $4 -$ queen's problem. Draw the portion of the state space tree for n = 4 queens using backtracking algorithm.	[8M]
7	a)	Give the 0/1 Knapsack LCBB algorithm. Explain how to find optimal solution using variable – tuple sized approach.	[9M]

b) Distinguish between backtracking and branch – and bound techniques. [7M]

SET - 2

III B.Tech II Semester Regular Examinations, April - 2016 DESIGN AND ANALYSIS OF ALGORITHMS (Common to CSE and IT)

Time: 3 hours

Code No: RT32054

Max. Marks: 70

Note: 1.	Question	Paper	consists	of two	parts	(Part-A	and Part-B)

2. Answering the question in Part-A is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART -A

1	a)	Define i) Profiling ii) Time Complexity iii) Space Complexity.	[3M]
	b)	State the Greedy Knapsack Problem.	[4M]
	c)	Distinguish between Prim's and Kruskal's Spanning tree algorithm.	[4M]
	d)	Draw all possible binary search trees for the identifier set (do, if, stop).	[4M]
	e)	Define Chromatic number & Give the state space tree for 4 – coloring problem.	[4M]
	f)	Define Bounding Function? Give the statement of 0/1 Knapsack FIFO BB.	[3M]
		<u>PART –B</u>	
2	a)	What are the different mathematical notations used for algorithm analysis.	[4M]
	b)	Give the algorithm for transpose of a matrix $m \ge n$ and determine the time complexity of the algorithm by frequency – count method.	[8M]
	c)	Discuss the Amortized analysis with an example.	[4M]
3	a)	What are the advantages and disadvantages of Divide – And – Conquer?	[3M]
	b)	Write Divide – And – Conquer recursive Quick sort algorithm and analyze the algorithm for average time complexity.	[8M]
	c)	Derive the time complexity of Quick sort algorithm for worst case.	[5M]
4	a)	State the Job – Sequencing with deadlines problem. Find an optimal sequence to the n=5 Jobs where profits $(P1,P2,P3,P4,P5) = (20,15,10,5,1)$ and deadlines $(d1,d2,d3,d4,d5) = (2,2,1,3,3)$.	[8M]
	b)	What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example.	[8M]
5	a)	Explain Reliability Design Problem with suitable example.	[7M]
	b)	Describe the Dynamic 0/1 Knapsack Problem. Find an optimal solution for the dynamic programming 0/1 knapsack instance for n=3, m=6, profits are (p1, p2, p3) = $(1,2,5)$, weights are (w1,w2,w3)= $(2,3,4)$.	[9M]
6	a)	Write an algorithm for N – queen's problem. Give time and space complexity for 8 – queen's problem.	[8M]
	b)	Give the statement of sum –of subsets problem. Find all sum of subsets for $n=4$, $(w1, w2, w3, w4) = (11, 13, 24, 7)$ and $M=31$.Draw the portion of the state space tree using fixed – tuple sized approach.	[8M]

1 of 2

7 a) What is LC – Search? Discuss LC – Search algorithm.

[7M]

b) Explain Travelling sales person person problem LCBB procedure with the [9M] following instance and draw the portion of the state space tree and find an optimal tour.

$$\begin{pmatrix}
\infty & 20 & 30 & 10 & 11 \\
15 & \infty & 16 & 4 & 2 \\
3 & 5 & \infty & 2 & 4 \\
19 & 6 & 18 & \infty & 3 \\
16 & 4 & 7 & 16 & \infty
\end{pmatrix}$$

www.firstRanker.com

SET - 3

III B. Tech II Semester Regular Examinations, April - 2016 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE and IT)

Time: 3 hours

1

Code No: RT32054

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in Part-A is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART –A

	IANI -A	
a)	Describe & Define any three Asymptotic Notations.	[3M]
b)	Write Control Abstraction of Divide – and – Conquer.	[4M]
c)	Find an optimal solution to the knapsack instance n=4 objects and the capacity	[4M]
	of knapsack m=15, profits (10, 5, 7, 11) and weight are (3, 4, 3, 5).	
d)	Distinguish between Dynamic Programming and Greedy method.	[4M]
e)	What is a Backtracking and give the 4 – Queens's solution.	[4M]

f) Define : i) LC – Search ii) Branch and Bound (BB) iii) FIFO – BB. [3M]

PART -B

2	a)	Explain the performance Analysis.	[4M]
	b)	Give the algorithm for matrix additions and determine the time complexity of this algorithm by frequency – count method.	[8M]
	c)	Discuss the Pseudo code conventions for expressing algorithms.	[4M]
3	a)	Distinguish between Merge sort and quick sort.	[3M]
	b)	Explain Recursive Binary search algorithm with suitable examples.	[8M]
	c)	Discuss the time complexity of Binary search algorithm for best and worst case.	[5M]
4	a)	Find an optimal solution to the knapsack instance n=7 objects and the capacity of knapsack m=15. The profits and weights of the objects are $(P1,P2,P3, P4, P5, P6, P7)=(10, 5,15,7,6,18,3)$ $(W1,W2,W3,W4,W5,W6,W7)=(2,3,5,7,1,4,1)$	[8M]
	b)	Discuss the single – source shortest paths algorithm with suitable example.	[8M]
5	a)	What is All – Pair Shortest Path problem (APSP)? Discuss the Floyd's APSP algorithm and discuss the analysis of this algorithm.	[9M]
	b)	What is principle's of optimality? Explain how travelling sales person problem uses the dynamic programming technique with example.	[7M]
6	a)	Write control abstraction for backtracking.	[7M]
	b)	Explain the Graph – coloring problem. And draw the state space tree for $m= 3$ colors $n=4$ vertices graph. Discuss the time and space complexity.	[9M]
7	a) b)	Write Control Abstraction of Least – Cost(LC) Search. Explain the FIFO BB 0/1 Knapsack problem procedure with the knapsack instance for $n=4.m=15,(p1,p2,p3,p4)=(10,10,12,18)$ (w1,w2,w3,w4) =(2, 4, 6, 9). Draw the portion of the state space tree and find optimal solution.	[7M] [9M]

SET - 4 Code No: RT32054 **R13** III B. Tech II Semester Regular Examinations, April - 2016 DESIGN AND ANALYSIS OF ALGORITHMS (Common to CSE and IT) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in **Part-A** is compulsory 3. Answer any THREE Questions from Part-B ***** PART -A a) Describe Different characteristics of an algorithm. 1 [3M] Distinguish between Divide and conquer and Greedy method. [4M] b) c) Write Control Abstraction of Greedy method. [4M] d) Give the statement of Reliability design problem. [4M] e) Define : i) State Space tree ii) E – Node and iii) Dead Node. [3M] f) Write the Control Abstraction of Least – Cost Branch and Bound. [4M] PART -B 2 a) Explain recursive functions algorithm analysis with an example. [4M] b) Explain the method of determining the complexity of procedure by the step [8M] count approach. Illustrate with an example, Give the Big – O notation definition and briefly discuss with suitable example. c) [4M] 3 What is stable sorting method? Is Merge sort a stable sorting method? [3M] a) Explain partition exchange sort algorithm and trace this algorithm for n = 8b) [8M] elements: 24,12, 35, 23,45,34,20,48 Write non – recursive binary search algorithm? [5M] c) Explain differences between Prim's and Kruskal's Minimum spanning Tree [8M] 4 a) algorithm. Derive the time complexity of Kruskal's algorithm. b) Discuss the Dijkstra's single source shortest path algorithm and derive the [8M] time complexity of this algorithm. 5 Construct an optimal travelling sales person tour using Dynamic [9M] a) 9 3 Programming. 10 0 5 6 2 0 9 7 6 0 7 3 5 0 b) Discuss the time and space complexity of Dynamic Programming traveling [7M] sales person algorithm. What is a backtracking? Give the explicit and implicit constraints in 8 queen's [8M] 6 a) problem. b) Draw the portion of state space tree for 4 queen's problem using variable – [8M] tuple sized approach.

1 of 2

- 7 a) Draw the portion of state space tree generated by FIFOBB for the job [8M] sequencing with deadlines instance n=5, (p1,p2,...,p5) =(6,3,4,8,5), (t1,t2,..t5) = (2,1,2,1,1) and (d1,d2,...,d5)=(3,1,4,2,4). What is the penalty corresponding to an optimal solution.
 - b) Draw the portion of state space tree generated by LCBB for the 0/1 Knapsack [8M] instance: n = 5, (p1,p2,...,p5) = (10,15,6,8,4), (w1,w2,...,w5) = (4,6,3,4,2) and m=12. Find an optimal solution using fixed tuple sized approach.

www.firstRanker.com