III B. Tech II Semester Regular Examinations, April - 2016

 DESIGN AND ANALYSIS OF ALGORITHMS(Common to CSE and IT)

Time: 3 hours

Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Distinguish between Algorithm and Psuedocode.
b) Describe the Algorithm Analysis of Binary Search.
c) State the Job - Sequencing Deadline Problem.
d) Define i) Principles of optimality ii) Feasible solution iii) Optimal solution. [3M]
e) Write the Control Abstraction of iterative Backtracking method.
f) Distinguish between fixed - tuple sized and variable tuple sized state space tree organization.

PART -B

2 a) Explain the properties of an algorithm with an example.
b) Give the algorithm for matrix multiplication and find the time complexity of the algorithm using step - count method.
c) Differentiate between Bigoh and omega notation with example.

3 a) What is meant by Divide - and - Conquer approach?
b) Write Divide - And - Conquer recursive Merge sort algorithm and derive the time complexity of this algorithm.
c) Write the General method of Divide - And - Conquer approach.

4 a) State the Greedy Knapsack? Find an optimal solution to the Knapsack instance $\mathrm{n}=3, \mathrm{~m}=20,(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3)=(25,24,15)$ and $(\mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3)=(18,15,10)$.
b) What is a Spanning tree? Explain Prim's Minimum cost spanning tree [8M] algorithm with suitable example.
5 a) Draw an Optimal Binary Search Tree for $\mathrm{n}=4$ identifiers (a1, $\mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4)=($ do,if, read, while) $\mathrm{P}(1: 4)=(3,3,1,1)$ and $\mathrm{Q}(0: 4)=(2,3,1,1,1)$.
b) Explain how Matrix - chain Multiplication problem can be solved using [7M] dynamic programming with suitable example.
6 a) What is a Hamiltonian Cycle? Explain how to find Hamiltonian path and cycle [8M] using backtracking algorithm.
b) Discuss the 4 - queen's problem. Draw the portion of the state space tree for n [8 M] $=4$ queens using backtracking algorithm.
7 a) Give the $0 / 1$ Knapsack LCBB algorithm. Explain how to find optimal solution [9M] using variable - tuple sized approach.
b) Distinguish between backtracking and branch - and bound techniques.

III B.Tech II Semester Regular Examinations, April - 2016 DESIGN AND ANALYSIS OF ALGORITHMS
 (Common to CSE and IT)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

 PART - A

1 a) Define i) Profiling ii) Time Complexity iii) Space Complexity.
b) State the Greedy Knapsack Problem.
c) Distinguish between Prim's and Kruskal's Spanning tree algorithm.
d) Draw all possible binary search trees for the identifier set (do, if, stop).
e) Define Chromatic number \& Give the state space tree for 4 - coloring problem.
f) Define Bounding Function? Give the statement of $0 / 1$ Knapsack FIFO BB.

PART -B

2 a) What are the different mathematical notations used for algorithm analysis.
b) Give the algorithm for transpose of a matrix mxn and determine the time complexity of the algorithm by frequency - count method.
c) Discuss the Amortized analysis with an example.

3 a) What are the advantages and disadvantages of Divide - And - Conquer?
b) Write Divide - And - Conquer recursive Quick sort algorithm and analyze the algorithm for average time complexity:
c) Derive the time complexity of Quick sort algorithm for worst case.

4 a) State the Job - Sequencing with deadlines problem. Find an optimal sequence to the $\mathrm{n}=5$ Jobs where profits $(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4, \mathrm{P} 5)=(20,15,10,5,1)$ and deadlines $(\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4, \mathrm{~d} 5)=(2,2,1,3,3)$.
b) What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example.

5 a) Explain Reliability Design Problem with suitable example.
b) Describe the Dynamic 0/1 Knapsack Problem. Find an optimal solution for the dynamic programming $0 / 1$ knapsack instance for $\mathrm{n}=3, \mathrm{~m}=6$, profits are ($\mathrm{p} 1, \mathrm{p} 2$, $\mathrm{p} 3)=(1,2,5)$, weights are $(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3)=(2,3,4)$.

6 a) Write an algorithm for N - queen's problem. Give time and space complexity for 8 - queen's problem.
b) Give the statement of sum -of subsets problem. Find all sum of subsets for $\mathrm{n}=4,(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(11,13,24,7)$ and $\mathrm{M}=31$.Draw the portion of the state space tree using fixed - tuple sized approach.

7 a) What is LC - Search? Discuss LC - Search algorithm.
b) Explain Travelling sales person person problem LCBB procedure with the following instance and draw the portion of the state space tree and find an optimal tour.
$\left(\begin{array}{llllr}\infty & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty\end{array}\right)$

III B. Tech II Semester Regular Examinations, April - 2016 DESIGN AND ANALYSIS OF ALGORITHMS
 (Common to CSE and IT)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Describe \& Define any three Asymptotic Notations.
b) Write Control Abstraction of Divide - and - Conquer.
c) Find an optimal solution to the knapsack instance $\mathrm{n}=4$ objects and the capacity of knapsack $m=15$, profits ($10,5,7,11$) and weight are ($3,4,3,5$).
d) Distinguish between Dynamic Programming and Greedy method.
e) What is a Backtracking and give the 4 - Queens's solution.
f) Define : i) LC - Search ii) Branch and Bound (BB) iii) FIFO - BB.

PART -B

2 a) Explain the performance Analysis.
b) Give the algorithm for matrix additions and determine the time complexity of this algorithm by frequency - count method.
c) Discuss the Pseudo code conventions for expressing algorithms.

3 a) Distinguish between Merge sort and quick sort.
b) Explain Recursive Binary search algorithm with suitable examples.
c) Discuss the time complexity of Binary search algorithm for best and worst case.

4 a) Find an optimal solution to the knapsack instance $\mathrm{n}=7$ objects and the capacity of knapsack $\mathrm{m}=15$. The profits and weights of the objects are ($\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4, \mathrm{P} 5$, $\mathrm{P} 6, \mathrm{P} 7)=(10,5,15,7,6,18,3)(\mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3, \mathrm{~W} 4, \mathrm{~W} 5, \mathrm{~W} 6, \mathrm{~W} 7)=(2,3,5,7,1,4,1)$
b) Discuss the single - source shortest paths algorithm with suitable example.

5 a) What is All - Pair Shortest Path problem (APSP)? Discuss the Floyd's APSP algorithm and discuss the analysis of this algorithm.
b) What is principle's of optimality? Explain how travelling sales person problem uses the dynamic programming technique with example.

6 a) Write control abstraction for backtracking.
b) Explain the Graph - coloring problem. And draw the state space tree for $\mathrm{m}=3$ colors $n=4$ vertices graph. Discuss the time and space complexity.

7 a) Write Control Abstraction of Least - Cost(LC) Search.
b) Explain the FIFO BB $0 / 1$ Knapsack problem procedure with the knapsack instance for $\mathrm{n}=4 . \mathrm{m}=15,(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(10,10,12,18)(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(2,4,6$, $9)$. Draw the portion of the state space tree and find optimal solution.

III B. Tech II Semester Regular Examinations, April - 2016

 DESIGN AND ANALYSIS OF ALGORITHMS(Common to CSE and IT)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

 PART -A

1 a) Describe Different characteristics of an algorithm.
b) Distinguish between Divide and conquer and Greedy method.
c) Write Control Abstraction of Greedy method.
d) Give the statement of Reliability design problem.
e) Define : i) State Space tree ii) E - Node and iii) Dead Node.
f) Write the Control Abstraction of Least - Cost Branch and Bound.

PART -B

2 a) Explain recursive functions algorithm analysis with an example.
b) Explain the method of determining the complexity of procedure by the step count approach. Illustrate with an example.
c) Give the Big - O notation definition and briefly discuss with suitable example.

3 a) What is stable sorting method? Is Merge sort a stable sorting method?
b) Explain partition exchange sort algorithm and trace this algorithm for $\mathrm{n}=8$ elements: $24,12,35,23,45,34,20,48$
c) Write non - recursive binary search algorithm?

4 a) Explain differences between Prim's and Kruskal's Minimum spanning Tree algorithm. Derive the time complexity of Kruskal's algorithm.
b) Discuss the Dijkstra's single source shortest path algorithm and derive the time complexity of this algorithm.

5 a) Construct an optimal travelling sales person tour using Dynamic [9M] Programming.
$\left(\begin{array}{llll}0 & 10 & 9 & 3 \\ 5 & 0 & 6 & 2 \\ 9 & 6 & 0 & 7 \\ 7 & 3 & 5 & 0\end{array}\right)$
b) Discuss the time and space complexity of Dynamic Programming traveling sales person algorithm.

6 a) What is a backtracking? Give the explicit and implicit constraints in 8 queen's problem.
b) Draw the portion of state space tree for 4 queen's problem using variable - [8M] tuple sized approach.

7 a) Draw the portion of state space tree generated by FIFOBB for the job sequencing with deadlines instance $\mathrm{n}=5,(\mathrm{p} 1, \mathrm{p} 2, . ., \mathrm{p} 5)=(6,3,4,8,5)$, $(\mathrm{t} 1, \mathrm{t} 2, . . \mathrm{t} 5)$ $=(2,1,2,1,1)$ and $(\mathrm{d} 1, \mathrm{~d} 2, . ., \mathrm{d} 5)=(3,1,4,2,4)$. What is the penalty corresponding to an optimal solution.
b) Draw the portion of state space tree generated by LCBB for the $0 / 1$ Knapsack instance: $\mathrm{n}=5,(\mathrm{p} 1, \mathrm{p} 2, \ldots, \mathrm{p} 5)=(10,15,6,8,4),(\mathrm{w} 1, \mathrm{w} 2, . ., \mathrm{w} 5)=(4,6,3,4,2)$ and $\mathrm{m}=12$. Find an optimal solution using fixed - tuple sized approach.

